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Energy Function

The BEC comprises 4 gas components, each described by its own wave function
uj : Ω → R (j = 1, 2, 3, 4), where Ω is unit ball in R3. The energy is given by:

Eµ(u) =
1
2

∫
Ω

4∑
j=1

(
|∇uj |2 − µu2

j +
g
2

u4
j

)
+

4∑
i,j=1(i ̸=j)

g̃
2

u2
i u2

j dx . (1)

where
• u = (u1, ..., u4) : Ω → R4 represents the vector of components.
• The constant µ correspond to the chemical potentials.
• The coupling constant g̃ describe the interaction between the i-th and j-th

components.
• g is the energy coefficient of j-th component itself.
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Gross-Pitaevskii Equation

The solutions of BECs are the solution to

∇uEµ(u) = 0, with Neumann boundary conditions. (2)

It can be explicitly written as (the Gross-Pitaevskii equation):

−∆uj − µuj + gu3
j +

4∑
i=1(i ̸=j)

g̃u2
i uj = 0,

∂uj

∂x

∣∣∣∣
|x|=1

= 0, j = 1, 2, 3, 4. (3)

System (3) has a branch of trivial solution given by

uµ = (cµ, cµ, cµ, cµ), cµ =
(
µ/(g + 3g̃)

)1/2
, (4)

The purpose of this work is to explore existence of bifurcation of non-trivial
solutions arising from uµ, using bifurcation parameter µ ∈ R.
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Functional Space Reformulation
We define the following notations in the context of our bifurcation problem.

• The space where the solutions to the problem (2) live is given by

X :=

{
u ∈ H2(Ω;R4) :

∂u
∂n

∣∣∣∣
∂Ω

= 0
}

(5)

• The energy functional Eµ : X → R is given by formula (1).
• The unbounded operator L := −∆+ I : X → L2(Ω,R4) is a closed self-adjoint

Fredholm operator of index zero, and L−1 : L2(Ω,R4) → X is continuous.

• Operator Kµ : X → X ⊂ L2(Ω,R4), where

Kµ(u) = (K1(µ, u), ...,K4(µ, u)) ,

Kj(µ, u) = −(µ+ 1)uj + gu3
j + g̃

4∑
i=1(i ̸=j)

u2
i uj .

Kµ is well-defined and continuous.
Then the gradient ∇uEµ : X → X given by

∇uEµ(u) = u + L−1Kµ(u) (gE)

is completely continuous field.
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Group

Consider the action of the group

G = O(3)× S4

on the space X given by the formula{
γu(x) = u(γ−1x), γ ∈ O(3),
σu(x) = (uσ−1(1), ..., uσ−1(4)), σ ∈ S4.

where S4 is the group of permutations of {1, 2, 3, 4}

Obviously X is a Hilbert G-representation with respect to the above action.

Remark: Since the energy Eµ(u) is G-invariant, its gradient ∇uEµ(u) is
G-equivariant completely continuous field, and consequently, the gradient
G-equivariant degree theory can be applied to the bifurcation problem (2).
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Method of Equivariant Degree Theory
• Set of trivial solutions by T , i.e.

T = {(uµ, µ);µ ∈ R} ⊂ X × R.
• Λ the critical set of µ such that the Hessian ∇2Eµ(uµ) is not an isomorphism.
• Assume µ0 ∈ Λ and µ− < µ0 < µ+ such that [µ−, µ+] ∩ Λ = {µ0}.
• Let U ⊂ X be sufficiently small neighbourhood of uµ, then G-equivariant

gradient degree ∇G-deg(∇uEµ±(uµ±),U) is well-defined.
• Define bifurcation index (the equivariant topological invariant) by the

formula
ωG(µ0) := ∇G-deg (∇uEµ−(uµ−),U)−∇G-deg (∇uEµ+(uµ+),U). (6)

Theorem
If ωG(µ0) ̸= 0 ∈ U(G), then a global bifurcation from (uµ0 , µ0) occurs. Moreover, for
every non-zero coefficient mj in

ωG(µ0) = m1(H1) + m2(H2) + . . .mr (Hr ),

there exists a global family of non-trivial solutions with symmetries at least Hj . If (Hj) is
a maximal orbit type then this family has exact symmetries (Hj).
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Laplace Operator
Let −∆ : X → L2(Ω;R) with Neumann boundary conditions, where X =

{
u ∈ H2(Ω;R) : ∂u

∂n

∣∣∣
∂Ω

= 0
}
.

• The spectrum of the Laplace operator is given by

σ(−∆) =
{

s2
km : k,m ∈ N

}
, (7)

* s2
km is the m-th positive zero of the function:

ψk (λ) :=
d

dr
(r−

1
2 J

k+ 1
2
(λr))

∣∣∣∣
r=1

(8)

* J
k+ 1

2
is the (k + 1

2 )-th Bessel function of the first kind.

• The eigenspace associated to each s2
km is given by

Ekm =

〈
r−

1
2 J

k+ 1
2
(skmr)T n

k (θ, φ) : 0 ≤ n ≤ k
〉
, (9)

* T n
k (θ, φ) are called surface harmonics of degree k .

* Eigenspace E00 = ⟨1⟩ , corresponding to eigenvalue S00 = 0.
•

The O(3)-irreducible representation Vk , k = 0, 1, ... is of dimension 2k + 1, and space Ekm is O(3)-equivalent to Vk .
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Spectrum of Hessian
• The Hessian ∇2Eµ(uµ) : X → X is the linear operator

∇2Eµ(uµ) = L−1
(
−∆I + 2c2

µM
)
, (10)

where

M =


g g̃ g̃ g̃
g̃ g g̃ g̃
g̃ g̃ g g̃
g̃ g̃ g̃ g

 ,

• The eigenvalues of matrix M are given by g − g̃ with multiplicity 3 and g + 3g̃
with multiplicity 1.

• The spectrum of ∇2Eµ(uµ) consists of

σ(∇2Eµ(uµ)) =


s2

km+2c2
µ(g−g̃)

s2
km+1

mult 3(2k + 1)
s2

km+2c2
µ(g+3g̃)

s2
km+1

mult (2k + 1)
: k ,m ∈ N

 . (11)

• Under the immisible assumption g ≤ g̃, the critical value is given by

µkm := g+3g̃
2(g̃−g)s

2
km, (k ,m) ∈ N2. (12)
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Isotypic Decomposition
Notice that:

• For space X in equation (5), we have

X =
∞⊕

k=0

(Ekm)4, (13)

where Ekm is the eigenspace represented in equation (9).
• (Ekm)

4 = Ekm ⊗ R4.
• R4 decompose in the S4 irreducible representation W0 and W4, i.e.

R4 = W0 ⊕W4.

The action of S4 has the following characters for irreducible representations

Rep. Character (1) (1,2) (1,2)(3,4) (1,2,3) (1,2,3,4)
W0 χ0 1 1 1 1 1
W1 χ1 1 -1 1 1 -1
W2 χ2 2 0 2 -1 0
W3 χ3 3 -1 -1 0 1
W4 χ4 3 1 -1 0 -1
R4 χR4 4 2 0 1 0
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Isotypic Decomposition

We conclude that:
• (Ekm)

4 has the following decomposition

(Ekm)
4 = (Ekm ⊗W0)⊕ (Ekm ⊗W4). (14)

• Therefore, space X in equation (5) has the isotypic decomposition given by

X =
∞⊕

k=0

(
X 0

k ⊕X 4
k

)
, (15)

where

X 0
k =

∞⊕
m=1

Ekm ⊗W0 , X 4
k =

∞⊕
m=1

Ekm ⊗W4 . (16)

• The isotypic component X 4
k is modeled on the O(3)× S4-irreducible

representation in Vk ⊗W4, which is of dimension 3(2k + 1).
• The eigenspace corresponding to spectrum of ∇uEµ(u) in first case of

equation (11) is Vk ⊗W4.
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Computation of Bifurcation index ωG(µkm)

Notice that
• ωG(µkm) := ∇G-deg (∇2

uEµ− (u),U)−∇G-deg (∇2
uEµ+ (u),U).

•

ωG(µkm) =
∏

{(j,n)∈N2:sjn<skm}
∇G -degVj⊗W4

−
∏

{(j,n)∈N2:sjn≤skm}
∇G -degVj⊗W4

=

 ∏
{(j,n)∈N2:sjn<skm}

∇G -degVj⊗W4


(G)−

∏
{(j,n)∈N2:sjn=skm}

∇G-degVj⊗W4


=: a ∗ b. (17)

* The basic degrees are invertible elements in U(G).
* Let a, b ∈ U(G) be such that a is an invertible element in U(G) and

(H) ∈ max(b). Then coeffH(a ∗ b) ̸= 0.
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Bifurcation in General Case

For certain Skm , to compute b :=

(
(G) −

∏{
(j,n)∈N2 :sjn=skm

}∇G -degVj⊗W4

)
, we consider two cases:

(i) there is only one n0 ∈ N+ such that (0, n0) ∈
{
(j, n) ∈ N2 : sjn = skm

}
(ii) there is none.

For case (i),
∇G -degW4

= (G) − (O(3) × D2) − 2(O(3) × D3)) + 3(O(3) × D1) − (O(3)), (18)

Therefore, we have

b : = ∇G -degW4
∗

∇G -degW4
−

∏
{
(j,n)∈N2 :sjn=skm, j ̸=0

}∇G -degVj⊗W4


= ∇G -degW4

∗ c, (19)

where
c = −(O(3) × D2) − 2(O(3) × D3)) + 3(O(3) × D1) − (O(3)) +

∑
l

αl (Hl ),

and dim Hl = 0 or 1.
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Bifurcation in V1 ⊗W4

• Restriction of action of the group S4 < O(3) to the representation V1 is W3.
• Take the subgroup G′ := Sp

4 × S4 ≤ O(3)× S4, Sp
4 := S4 × Z2,

• As a G′-representation, V1 ⊗W4 is equivalent to the irreducible
Sp

4 × S4-representation W−
3 ⊗W4.

By using the GAP system one can compute the corresponding basic
G′-equivariant degree

∇G′ -degW−
3 ⊗W4

= (G′)− (Dp
4

Z−2 × D4 D4)1 − (Dp
4

Z−2 × D4 D4)2 − (Dp
4

Dz
4 × D2 D4) (20)

− (Dp
4

Dz
4 × D1 D2)− (Dp

3

Dz
3 × D1 D2)− (Dp

3

Dz
3 × D2 D4)

− (Dp
2

Dd
2 × D2 D4)− (Dp

2
Dd

2 × D1 D2)− (Dz
4 × D3)− (S−

4 ×S4 S4)

− (Dd
2 × D3)− (Dz

3 × D3)− (D3 × D3 D3) + α,

where α denotes the element in the Euler ring U(G′) with all the coefficients
corresponding to sub-maximal orbit types.
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Bifurcation in V1 ⊗W4

Notice that for a subgroup G′ of G, i.e. ψ : G1 → G is the natural embedding,
induces the ring homomorphism Ψ : U(G) → U(G1) called the Euler ring
homomorphism and one has

Ψ
(
∇G-degV1⊗W4

)
=

(
∇G′ -degW−

3 ⊗W4

)
. (21)

∇G-degV1⊗W4
= (G)− 2(Dp

4

Z−2 × D4 D4)− (Dp
4

Dz
4 × D2 D4) (22)

− (Dp
4

Dz
4 × D1 D2)− (Dp

3

Dz
3 × D1 D2)− (Dp

3

Dz
3 × D2 D4)

− (Dp
2

Dd
2 × D2 D4)− (Dp

2
Dd

2 × D1 D2)− (Dz
4 × D3)− (S−

4 ×S4 S4)

− (Dd
2 × D3)− (Dz

3 × D3)− (D3 × D3 D3) + β,

where β denotes the element in the Euler ring U(G) with all the coefficients
corresponding to sub-maximal orbit types.
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Main Theorem

• Suppose that BECs is immiscible , i.e. 0 < g < g̃.
• Denote by σ(−△) = {s2

km : k ,m ∈ N} the spectrum of the Laplace operator
−△ with Neumann boundary conditions in Ω

• Put critical value
µkm :=

g + 3g̃
2 (g̃ − g)

s2
km.

Theorem
• The equation ∇uE(u) = 0 undergoes a global bifurcation from the trivial

solution uµ at any critical value µkm with (k ,m) ̸= (0, 0).
• In the case k = 1, there exists at least 13 G-orbits of global branches bifurcating

from uµ at the isotypic simple critical value µ1m for m ∈ N+.
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