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Problem Set Up

In this work, we study the existence of non-radial solutions to the following non-variational
Laplace system on the unitball Q := {x € R : [x| < 1} :

-Au = f(x,u), u(x)eRS, (1)
ulaq =0,

where f: Q x RS — RS is a continuous odd radially symmetric function of sublinear growth,
which is differentiable at zero.

We have the following assumptions:
(A1) f(gx,u) =f(x,u)forall x € Q, ueRsand g € O(3);
(A2) f(x,—u)=—f(x,u)forallx € Q, ueRS

(Ag) there exists a s x s-matrix A, ¢ > 0 and 8 > 1 such that
[f(x,u) — Au| < clu]® forall x € Q,ueRS;
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Problem Set Up

(A4) there exist a, b > 0 and a € (0, 1) such that |f(x,u)| < alu|* + b forall x € Q,u e RS,
(As) Matrix A is diagonalizable with eigenvalues py < po < ... < us

(Ag) forall I =1,2,...,.s,me N,k =0,1,2..., one has sy, # u;, where siy, denotes the m-th
positive zero of the Bessel function Jy_ 1 /2.

Notice that
* Aq, Ao shows the system is G := O(3) x Z, symmetric.
* As provides linearization of (1) at zero.
* A4 is for reformulation of (1) in suitable functional space and obtaining a priori bounds.

* As, Ag determines properties of the spectrum of linearization at zero.
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Notations and Main Result

We apply the Brouwer G-equivariant degree theory to obtain the system (1) and the existence of
various types of non-radial solutions. For this purpose, the following introduces essential
notations.

» Denote by Vi, k =0,1,2,... the complete list of the natural irreducible
O(3)-representations (i.e. O(3) acts on spherical harmonics of order k)

* Denote by V,~ =V, k =0,1,2,..., the imeducible O(3) x Z-representations with the
antipodal Z,-action.

» Fora G-space X, x € X, put Gx := {g € G: gx = x} and call it the isotropy group of x.
Then the conjugacy class (Gy) is called the orbit type of x.

+ We put (G; X) := {(Gx) : x € X} the set of all orbit types in X. Then for two conjugacy
classes (H) and (K) of subgroups in G we write (H) < (K) if there exists g € G such that
gHg—! < K.

+ A conjugacy class (H) of a subgroup H < G is called maximal non-radial if for some
k € 2N — 1, (H) is a maximal element in ®(G; Vi \ {0}) with respect to the relation ‘<’.
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Notations and Main Result

Consider a non-radial maximal orbit type (H). Put
P ={(k,m): sgm < p, kKE2N—-1, meN, I=1,2,...,s}.
Define the number my to be the cardinality (which in our case is finite) of the set
7" = {(k,m, ) e Z : (H) € d(G; Vi), dim(v,:)"’ is odd}. (2)

Then we have the following main result:

Under assumptions A1-A8, if (H) is non-radial maximal such that my is odd, then sys-
tem (1) admits a non-radial solution u € H}(Q, RS) N H?(, R®) such that G, > H.
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Functional Spaces Reformulation and a priori Bounds

Consider Sobolev space ¢ := H;(Q, RS) N HZ(Q, R®) equipped with the Sobolev norm
/
llull s == max{|[D'ull,2 : [I| <2}, I=(h,k,h), II=h+hk+h,

1
where D'y = %
ax"1 oy292'3

The linear operator & : € — LZ(Q;IRS) defined by Zu := —Au, u € 5 isanisomorphism.
One can consider % as an unbounded operator

£ D(ZL) C L2 R%) — L3R5,

which is clearly closed and self-adjoint unbounded Fredholm operator of index zero.

By Poincaré inequality, the graph norm on D(Z) is equivalent with the Sobolev norm on %, so the inverse operator
<~ is well defined and bounded.

Choose g > max{1,2a}, andletj: 52 — L9(Q; R®) be the standard Sobolev embedding. Then under the

assumption A4, the function
N(v)(x) := f(x, v(x)), x€Q forany v e LI(QR%), (3)
belongs to L2(Q, RS).

The system (1) is equivalent to the equation Zu = N(ju), u € 52, which can also be written as % (u) = 0, with the
nonlinear operator &% : ¢ — ¢, given by

FW)=u— L "N(ju)=0, ue 7. @)
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Functional Spaces Reformulation and a priori Bounds

The following result provides a priori bounds for the system (1):

Let f : Q x RS — RS be a continuous function satisfying the assumption A4, then there
exists a constant R > 0 such that ||u|| » < R for any solution u € J to system (1).

Define the linear operator o : 7 — ¢, by

AW (x) =u— 2L Au(x), ue.#, xeq.

Then, under the assumptions A3 and A4, the nonlinear operator .% : # — J given by (4) is a
completely continuous field differentiable at 0 € .»” with D.#(0) = «.
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O(8) x Zo-Isotypic decomposition of .7 and spectrum of </

Given the spectrum of . :
o(Z) = {Skm : Skm is the m-th positive zero of JHl, k=0,1,2,...},
2
and its corresponding eigenspace &(Sxm) given by
1
&(Skm) = span {riEJk_‘_l (Skm!) P (cos ) (acos(n@) + bsin(n@)) abeR 0<n< k},
2

where
(1 —s2)2 gk+n

2kkl  dgk+n
is called Legendre Function. Then, we have that the G-isotypic decomposition of 7 is

Pi(s) = (s = 1)

oo
A =P A,
k=0
where

H = @ ‘g}(skm)

m=1
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O(8) x Zo-Isotypic decomposition of .7 and spectrum of </

Consequently, one has the following spectrum of the operator &/

U(W):{ﬁkm/1:1—ﬂ1/:1,27---737 me N, k:0,172,---}-
Skm

The assumptions A4 and A5 imply that &/ : # — ¢ is an isomorphism and each of the
subspaces &' (&xmy) With eigenvalue &xqy of <7, is equivalent to the irreducible G-representation
V, ,i.e. in particular, & ({km) C 4. We denote by o (<7) the negative spectrum of <7, i.e.

o () == {Ekmi * Skm < tu}-
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Proofs of the main results

For a maximal non-radial orbit type (H) in .2#, we defined the number my as the cardinality of the
set 2", One should point out that maximal orbit types (H) in V, belong to
®o(G) :={(K) : K < G, W(K) is finite} and we have that

degy, = (G) + nu(H) + a,

where coeff’’(a) = 0 and
(_1)dim(V,:)H 1

ME T W)

which implies that ny # 0 if and only if dim(V;)H is odd. Consequently, we obtain that

my = |{Em € o (/) : coeffH(deng_) #0} (%)
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Proofs of the main results

* G:= 0O(3) x Zy acts naturally on the space ¢ and .% is G-equivariant.
» By assumption A5 and A6, «7 : /¥ — ¢ is an isomorphism.
+ There exists an ¢ > 0 s.t. . is B:(0)-admissibly G-equivariantly homotopic to <.
» 7 is Bg(0)-admissibly G-equivariantly homotopic to the identity Id.
+ PutQ:= Bg(0) \ B:(0) and @ := |, .
Then, by the additivity and product properties of the Brouwer G-equivariant degree,

G-deg(Z, Q) = G-deg(Z7, Br(0)) — G-deg(.Z, B(0))
= G-deg(1d, Br(0)) — G-deg(<7, B-(0)) = (G) — G-deg(«#, B-(0))

= (G) — G-deg(, B()) H [T (degy)
k=1 &km€o ()
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G-deg(Z,Q)=(G) - (G- 0@))°- I I (degv;) (fors=0o0r1)

~@-I1 [l e, )+a

k=1¢mi€o_ ()
=@~ Il (g, )+a
Ekmi€0— ()

_Jb if myiseven,
"\ nu(H)+ b if myisodd,

where a. b € A(G) satisfy coeff”(a) = coeff”(a) = 0 and

+ It follows from ny # 0 that if my is odd, then G-deg(.%,Q2) # 0. i.e.
coeff!! (G-deg(F,Q)) = ny # 0.

» By existence property of the Brouwer equivariant degree, there exists a non-zero solution
u to the equation .# (u) = 0 such that Gy > H. This solution is not radial.
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Example

. 16 0
Let2><2matr|xA:[0 12}
We have two eigenvalues pq = 12 < pp = 16 of A.

The negative spectrum o_ (&) := {&kmy =1 — S‘:—; : &kmi < 0} can be easily identified:

17.221 20.371 23.519 26.666 29.812
18.689 21.854 25.013 28.168 31.32
| 20122 | 23.304 26.477 29.643 32.804
21.525 24.728 27.916 31.094 34.265
22.905 26.128 29.333 32.525 35.708
24.263 27.508 30.73 33.937 37.132
25.603 28.87 32.111 35.333 38.541
26.927 30.217 33.477 36.715 39.936
28.237 31.55 34.829 38.082 41.318
29.535 32.871 36.168 39.438 42.688
30.821 34179 37.496 40.783 44.046
32.097 35.478 38.814 42117 45.395

Vi, ...V, are contributing to the eigenspaces of &7 associated with the negative eigenvalues.

YV, ,when/=2,4,6,8,10 are related to the radial solutions, we only focus on the
representations V", V7, ..., Vg .
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Example

The corresponding maximal non-radial orbit types are listed in the table below.

[ «

m=20
maximal (H) with odd d (H)

1

((02) x 2)°P)™ s

(0(2) x 22)°®)" x4,
— d d

(0(2) x 22)°®" xz, Zp, (Ds x 22)%6 Xz, Zp, (D x 72)"8 %z, 7,

Z

, o \Sa . N p
Za, (S4 % Z2)% X1, Zp, (D x Z2)%6 x1, 2z
pd.
(Dyo % Z)P10 x5, Z,
0 X Zg » L2
. - . 2 \Ss . . \0¢ p
(0(2) % 22)°@) xz, Zp, (S4 % 22)% X3, Zp, (Dg x 22)8 x2, Zp
d d d
D!
(D1o % Z)”10 xz, Zp, (Diz x )2 xz, Zp, (Dra x Zp)"14 xz, Zp
_ s— o4
(0(2) x 22)°®)7 7, Zp, (S4 X Z2)"* Xz, Tp, (D1o X Z2)°10 Xz, Zp
d d
Dip % 72)°12 x5, Zp, (Dyg x 22)°14 x3, Zp, (D x Z2)P16 x4, 2,
12 2 25 L2 (D1a X Zp 25 L2, (D1s 2 7y L2

(D1s x 25)"18 x3, 7p
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Then for each maximal orbit type (H;) in these components Vi, we determine the number m; and
apply Theorem to determine the existence of non-radial solution. The following table summarizes
these results:

Group my
Hi = (0(2) x Z5)%®) " xy, Zp my =19
Ho = (S4 X Zp) I Xz, Lo mp, =9
Hz = (Dg X Z3)P 3 Xz, L2 mg =8
H4=(DSXZz)8><Z222 my =6
Hs = (D1o X Zp) de Xz, Lo ms =7
He = (Dq2 % Zg) % Xz, L2 mg = 4
Hy = (D14 X Z5)"% xz, 7y my = 4
Hg = (D1g x Zo) % X7, Lo mg = 1
Hg = (D1g x 22)"% X7, Lo mg = 1
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Conclusion:

Let f : Q x R? — R? be a continuous map satisfying assumptions A1—-A4 with
16 0
A= {O 12} ’
Then, for the following non-radial maximal orbit types (H)
(0(2) x Z5)°®" xz, Zo, (S x L)% xz, Lo,

d d
(Dyo X Z2)P0 x7, Zp, (Diyg x Zo)P16 x7, Zo,

(Dig x Z)%s X7, L2,

there exists a non-radial solution u € H} (2, RS) N H2(Q, R) such that G, > H.
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Appendix: Spectrum of .Z

In order to describe spectrum of .#,we can consider a more general situation where Q C R is
the open unit ball in RY (d > 3)

—ANu=ZLu=Au, x€eN
’ 6
{U|89—0~ ©)

And use the spherical coordinates (r, 8) in RY:

BPu d—-1ou 1
S T o Tptet @)

where A g4+ is spherical Laplacian.

Au

Use separation of variables:
Let u(r,0) = R(r) - T(8), which is substituted to the equation —Au = Au leads to

PRI (d—V)R ,  Agei(T)

—fR + Arc = — = c (8)
rPR" +(d—1)rR' + (A —c)R=0 ©)
Asd—1(T) =cT.
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Appendix: Spectrum of .Z

Letc = k(k +d —2), R(r) == r~ % R(r), R(t) = R(%)

PRY(t) + (R (1) + ( (k+ %) ) R(t) = 0 (10)

This is classical Bessel equation.

* The bounded at zero solution to (6) is: R(t) = Jip a2 (1)
2
* Therefore, the solution to (5) is r™ 2 Jy a2 (V).
2
*u(r,0) = R(r)T(0) satisfies the Dirichlet condition if R(1) = 0,i.e. J,  4_2 (V) =0.
2

Given d = 3, then the spectrum of .Z is given by

(L) = {Skm : Skm is the m-th positive zero of J, vy K= =0,1,2,...}.
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Appendix: Spectrum of .Z

The m th positive zero of Bessel function of the first kind Jk+1 (Skm) = 0,where 0 < k < 19,1 < m< 20
2

Siar
e R 2 3 4 5 3 7 s
72566 | 15708 | 18550 | 21991 | 25133
14,066 | 17221 | 20371 | 2357 66
75515 | 18689 | 21650 | 25013 768
T6924 | 20.122 | 23308 | 26477 (25
4 T6.301 | 21525 | 24.728 | 27976 094
79655 | 22905 | 26126 | 29353 525
20953 | 24263 | 27508 | 30.73 | 33937
22295 | 25605 | 2667 T 333
5 25501 | 26027 | 30217 arr 775
] 20875 | 28237 | 3155 25 | 3082
7 6.145 | 2953 | 32671 | 36.168 438
7 27.401 | 30821 | 34179 | 3749 783
T 475 814 | 42117
7 767 22 | daa
T 047 | 4421 | #4757
7 19| 42712 | 46.065
7 56¢_| 43996 | 47365
7 T892 | 45272 | 48657
75 43005 | d6.592 | 49943
5] 37175 | 40803 | 44337 | 47805 | 51223
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Appendix: Eigenspace of .

Given d = 3,

* using the spherical coordinates (r,6,¢), r > 0, 6 € [0,27], » € [0, 7] =

B espo 1 #
O¢?  singp dp  sin? p 062

Ag = (11)

*Let T(6, o) = ©(8)®(w), use seperation of variable to the equation —Ag T = cT,

in2 !’ inod’ e
sin® p®’' 4 cos psin p fesintp= -2 =2, (12)

d (S]

where n=0,1,....

{@(9) = acos(nb) + bsin(no) (13)

sin? pd”’ 4 cos @ sin pd’ + (k(k +1)sin? ¢ — n2)¢ =0.
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Appendix: Eigenspace of .

Let s = cos g, P(s) = P(cos p) = ®(¢), (9) becomes the classical Legendre equation:
n2
(1 —8?)P" —2sP" + k(k+1)—ﬁ P=0, (14)

which, for k € Z, admits a bounded solution P, the Legendre function on [—1,1],

(1 _ 82)5 dk+n

Pe(s) = "ok gekin

Eigenfunctions of —A &, corresponding to the eigenvalue ¢ = k(k + 1), k > 0 are:

00, ) == P,Q’(cosgo)(acos(n@) n bsin(n6)> a beR, 0<n<k.

* The eigenspace &'(sxm) of £ corresponding to sy, is:

&(Skm) = span {F‘éJH%(skmr)T,?(G,gO) ca,beR, 0<n< k}.
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Appendix: Irreducible O(3) x Z, Representation and Isotypic Decomposition

Facts:

+ The O(3) representations Vi, k = 0,1,2,..., which are called natural irreducible
representations, are absolutely irreducible.

+ he O(3) x Zy-representation V,~ = Vi (with antipodal Z-action) is also absolutely
irreducible.

* The eigenspace &'(skm) is O(3) x Zg-equivalent to V,~ (for every m € N)
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Appendix: Amalgamated Notation of subgroups of O(3) x Z,

The twisted subgroups of SO(3) x Z,, which are
H? :={(9,2) € SO(3) x Z2 : ¢(9) = 2},
where H < SO(3) and ¢ : H — Zy is a homomorphism.

* The subgroups H of SO(3): SO(3), O(2), SO(2), Dn, n > 2, Zn, n > 1, and the exceptional
groups A4, S4 and As , can be identified with H® where ¢ : H — Z is a trivial homomorphism.

* Denote by z : Dy — Z» the epimorphism satisfying Ker (z2) = Zn,
* Denote by d : Do, — Zo, the epimorphism with Ker (d) = Dn;
* Denote by — the epimorphism ¢ : Sy — Z, with Ker (¢) = Ag;

* Denote by — the epimorphism ¢ : O(2) — Z, with Ker (¢) = SO(2);

* Denote by — the epimorphism ¢ : O(3) — Z> with Ker (¢) = SO(3)
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Appendix: Amalgamated Notation of subgroups of O(3) x Z,

Subgroups 7 < Gy x Go:
There exist subgroups H < G; and K < G, a group L, and two epimorphisms ¢ : H — L and
P K—L

A ={(h,k) € Hx K : p(h) =1(k)}.

The notation used to describe 7 is
H = HPx]K, (15)

In our case, one can identify ¢ and v by their kernels Hop := Ker (¢) and Ko := Ker (¢) , i.e. the
group 7 is the amalgamated notation can be written as

H = HMe xI° K.
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